Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae.

Identifieur interne : 001A26 ( Main/Exploration ); précédent : 001A25; suivant : 001A27

Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae.

Auteurs : F. Abe [Japon] ; K. Horikoshi

Source :

RBID : pubmed:11027279

Descripteurs français

English descriptors

Abstract

Hydrostatic pressure in the range of 15 to 25 MPa was found to cause arrest of the cell cycle in G(1) phase in an exponentially growing culture of Saccharomyces cerevisiae, whereas a pressure of 50 MPa did not. We found that a plasmid carrying the TAT2 gene, which encodes a high-affinity tryptophan permease, enabled the cells to grow under conditions of pressure in the range of 15 to 25 MPa. Additionally, cells expressing the Tat2 protein at high levels became endowed with the ability to grow under low-temperature conditions at 10 or 15 degrees C as well as at high pressure. Hydrostatic pressure significantly inhibited tryptophan uptake into the cells, and the Tat2 protein level was down-regulated by high pressure. The activation volume associated with tryptophan uptake was found to be a large positive value, 46.2 +/- 3.85 ml/mol, indicating that there was a net volume increase in a rate-limiting step in tryptophan import. The results showing cell cycle arrest in G(1) phase and down-regulation of the Tat2 protein seem to be similar to those observed upon treatment of cells with the immunosuppressive drug rapamycin. Although rapamycin treatment elicited the rapid dephosphorylation of Npr1 and induction of Gap1 expression, hydrostatic pressure did not affect the phosphorylation state of Npr1 and it decreased the level of Gap1 protein, suggesting that the pressure-sensing pathway may be independent of Npr1 function. Here we describe high-pressure sensing in yeast in comparison with the TOR-signaling pathway and discuss an important factor involved in adaptation of organisms to high-pressure environments.

DOI: 10.1128/mcb.20.21.8093-8102.2000
PubMed: 11027279
PubMed Central: PMC86419


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Abe, F" sort="Abe, F" uniqKey="Abe F" first="F" last="Abe">F. Abe</name>
<affiliation wicri:level="1">
<nlm:affiliation>The DEEPSTAR Group, Japan Marine Science and Technology Center, Yokosuka 237-0061, Japan. abef@jamstec.go.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>The DEEPSTAR Group, Japan Marine Science and Technology Center, Yokosuka 237-0061</wicri:regionArea>
<wicri:noRegion>Yokosuka 237-0061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Horikoshi, K" sort="Horikoshi, K" uniqKey="Horikoshi K" first="K" last="Horikoshi">K. Horikoshi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:11027279</idno>
<idno type="pmid">11027279</idno>
<idno type="pmc">PMC86419</idno>
<idno type="doi">10.1128/mcb.20.21.8093-8102.2000</idno>
<idno type="wicri:Area/Main/Corpus">001A32</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A32</idno>
<idno type="wicri:Area/Main/Curation">001A32</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A32</idno>
<idno type="wicri:Area/Main/Exploration">001A32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Abe, F" sort="Abe, F" uniqKey="Abe F" first="F" last="Abe">F. Abe</name>
<affiliation wicri:level="1">
<nlm:affiliation>The DEEPSTAR Group, Japan Marine Science and Technology Center, Yokosuka 237-0061, Japan. abef@jamstec.go.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>The DEEPSTAR Group, Japan Marine Science and Technology Center, Yokosuka 237-0061</wicri:regionArea>
<wicri:noRegion>Yokosuka 237-0061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Horikoshi, K" sort="Horikoshi, K" uniqKey="Horikoshi K" first="K" last="Horikoshi">K. Horikoshi</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Transport Systems (MeSH)</term>
<term>Blotting, Western (MeSH)</term>
<term>Cell Cycle (MeSH)</term>
<term>Cell Division (MeSH)</term>
<term>DNA Restriction Enzymes (metabolism)</term>
<term>Dose-Response Relationship, Drug (MeSH)</term>
<term>Down-Regulation (MeSH)</term>
<term>Escherichia coli Proteins (MeSH)</term>
<term>Flow Cytometry (MeSH)</term>
<term>Fungal Proteins (metabolism)</term>
<term>G1 Phase (MeSH)</term>
<term>Hydrostatic Pressure (MeSH)</term>
<term>Immunosuppressive Agents (pharmacology)</term>
<term>Membrane Transport Proteins (genetics)</term>
<term>Membrane Transport Proteins (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Plasmids (metabolism)</term>
<term>Protein Kinases (MeSH)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Temperature (MeSH)</term>
<term>Thermodynamics (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Tryptophan (pharmacokinetics)</term>
<term>ras GTPase-Activating Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cycle cellulaire (MeSH)</term>
<term>Cytométrie en flux (MeSH)</term>
<term>DNA restriction enzymes (métabolisme)</term>
<term>Division cellulaire (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Immunosuppresseurs (pharmacologie)</term>
<term>Phase G1 (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Plasmides (métabolisme)</term>
<term>Pression hydrostatique (MeSH)</term>
<term>Protein kinases (MeSH)</term>
<term>Protéines Escherichia coli (MeSH)</term>
<term>Protéines d'activation de la ras GTPase (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (MeSH)</term>
<term>Protéines de transport membranaire (génétique)</term>
<term>Protéines de transport membranaire (métabolisme)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Relation dose-effet des médicaments (MeSH)</term>
<term>Régulation négative (MeSH)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Systèmes de transport d'acides aminés (MeSH)</term>
<term>Technique de Western (MeSH)</term>
<term>Température (MeSH)</term>
<term>Thermodynamique (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Tryptophane (pharmacocinétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Transport Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA Restriction Enzymes</term>
<term>Fungal Proteins</term>
<term>Membrane Transport Proteins</term>
<term>ras GTPase-Activating Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Tryptophan</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Immunosuppressive Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Escherichia coli Proteins</term>
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de transport membranaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>DNA restriction enzymes</term>
<term>Plasmides</term>
<term>Protéines d'activation de la ras GTPase</term>
<term>Protéines de transport membranaire</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacocinétique" xml:lang="fr">
<term>Tryptophane</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Immunosuppresseurs</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Western</term>
<term>Cell Cycle</term>
<term>Cell Division</term>
<term>Dose-Response Relationship, Drug</term>
<term>Down-Regulation</term>
<term>Flow Cytometry</term>
<term>G1 Phase</term>
<term>Hydrostatic Pressure</term>
<term>Phosphorylation</term>
<term>Signal Transduction</term>
<term>Temperature</term>
<term>Thermodynamics</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cycle cellulaire</term>
<term>Cytométrie en flux</term>
<term>Division cellulaire</term>
<term>Facteurs temps</term>
<term>Phase G1</term>
<term>Phosphorylation</term>
<term>Pression hydrostatique</term>
<term>Protein kinases</term>
<term>Protéines Escherichia coli</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Relation dose-effet des médicaments</term>
<term>Régulation négative</term>
<term>Systèmes de transport d'acides aminés</term>
<term>Technique de Western</term>
<term>Température</term>
<term>Thermodynamique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Hydrostatic pressure in the range of 15 to 25 MPa was found to cause arrest of the cell cycle in G(1) phase in an exponentially growing culture of Saccharomyces cerevisiae, whereas a pressure of 50 MPa did not. We found that a plasmid carrying the TAT2 gene, which encodes a high-affinity tryptophan permease, enabled the cells to grow under conditions of pressure in the range of 15 to 25 MPa. Additionally, cells expressing the Tat2 protein at high levels became endowed with the ability to grow under low-temperature conditions at 10 or 15 degrees C as well as at high pressure. Hydrostatic pressure significantly inhibited tryptophan uptake into the cells, and the Tat2 protein level was down-regulated by high pressure. The activation volume associated with tryptophan uptake was found to be a large positive value, 46.2 +/- 3.85 ml/mol, indicating that there was a net volume increase in a rate-limiting step in tryptophan import. The results showing cell cycle arrest in G(1) phase and down-regulation of the Tat2 protein seem to be similar to those observed upon treatment of cells with the immunosuppressive drug rapamycin. Although rapamycin treatment elicited the rapid dephosphorylation of Npr1 and induction of Gap1 expression, hydrostatic pressure did not affect the phosphorylation state of Npr1 and it decreased the level of Gap1 protein, suggesting that the pressure-sensing pathway may be independent of Npr1 function. Here we describe high-pressure sensing in yeast in comparison with the TOR-signaling pathway and discuss an important factor involved in adaptation of organisms to high-pressure environments.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11027279</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>12</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>20</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2000</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>8093-102</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Hydrostatic pressure in the range of 15 to 25 MPa was found to cause arrest of the cell cycle in G(1) phase in an exponentially growing culture of Saccharomyces cerevisiae, whereas a pressure of 50 MPa did not. We found that a plasmid carrying the TAT2 gene, which encodes a high-affinity tryptophan permease, enabled the cells to grow under conditions of pressure in the range of 15 to 25 MPa. Additionally, cells expressing the Tat2 protein at high levels became endowed with the ability to grow under low-temperature conditions at 10 or 15 degrees C as well as at high pressure. Hydrostatic pressure significantly inhibited tryptophan uptake into the cells, and the Tat2 protein level was down-regulated by high pressure. The activation volume associated with tryptophan uptake was found to be a large positive value, 46.2 +/- 3.85 ml/mol, indicating that there was a net volume increase in a rate-limiting step in tryptophan import. The results showing cell cycle arrest in G(1) phase and down-regulation of the Tat2 protein seem to be similar to those observed upon treatment of cells with the immunosuppressive drug rapamycin. Although rapamycin treatment elicited the rapid dephosphorylation of Npr1 and induction of Gap1 expression, hydrostatic pressure did not affect the phosphorylation state of Npr1 and it decreased the level of Gap1 protein, suggesting that the pressure-sensing pathway may be independent of Npr1 function. Here we describe high-pressure sensing in yeast in comparison with the TOR-signaling pathway and discuss an important factor involved in adaptation of organisms to high-pressure environments.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Abe</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>The DEEPSTAR Group, Japan Marine Science and Technology Center, Yokosuka 237-0061, Japan. abef@jamstec.go.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Horikoshi</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026905">Amino Acid Transport Systems</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C491145">GAP1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007166">Immunosuppressive Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C429825">TAT2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020703">ras GTPase-Activating Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147682-31-3</RegistryNumber>
<NameOfSubstance UI="C066958">NPR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>55126-97-1</RegistryNumber>
<NameOfSubstance UI="C035131">TnaB protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8DUH1N11BX</RegistryNumber>
<NameOfSubstance UI="D014364">Tryptophan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.21.-</RegistryNumber>
<NameOfSubstance UI="D004262">DNA Restriction Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D026905" MajorTopicYN="Y">Amino Acid Transport Systems</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002453" MajorTopicYN="N">Cell Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002455" MajorTopicYN="N">Cell Division</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004262" MajorTopicYN="N">DNA Restriction Enzymes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004305" MajorTopicYN="N">Dose-Response Relationship, Drug</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="Y">Escherichia coli Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016193" MajorTopicYN="N">G1 Phase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006874" MajorTopicYN="N">Hydrostatic Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007166" MajorTopicYN="N">Immunosuppressive Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="Y">Protein Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="Y">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014364" MajorTopicYN="N">Tryptophan</DescriptorName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020703" MajorTopicYN="N">ras GTPase-Activating Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11027279</ArticleId>
<ArticleId IdType="pmc">PMC86419</ArticleId>
<ArticleId IdType="doi">10.1128/mcb.20.21.8093-8102.2000</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Eur J Biochem. 1993 Dec 1;218(2):463-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8269935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Nov 11;1414(1-2):165-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9804942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 May 3;271(18):10946-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8631913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Aug;13(8):5010-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7687745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Oct 30;71(3):463-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1423607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 May;122(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 1999 Nov;7(11):447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1974 Aug;77(4):661-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4609008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1992 Apr 27;301(3):299-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1577170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 1998 Aug;2(3):223-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9783169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 1995 Dec;17(12):1039-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8634065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Prog. 1992;76(301-302 Pt 3-4):479-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1364582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 6;285(5429):882-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jun 9;275(23):17229-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10764732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 1997;59:633-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9074781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1985 Jul 16;24(15):4091-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3840387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Sep 20;146(6):1227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10491387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Mar;27(5):977-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9535087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Mar;64(3):1139-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 Jun;9(6):1253-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9614172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1974 Aug;77(4):651-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4371644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 May 31;228(4703):1101-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3992247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 Aug;9(8):3447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2677674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1994 Aug 2;244(3):260-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8058037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Apr;65(4):1710-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10103272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Nov;17(11):6339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9343395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 1997 May;1(2):89-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9680307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Dec;83(24):9542-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Jun 15;19(12):2834-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10856229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1997 Oct;73(4):1866-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9336182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9482883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Apr;181(8):2330-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10197992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Dec;14(12):8259-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7526155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1997 Dec;9(6):782-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Oct;14(10):6597-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7523855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Orthop Res. 1996 Jan;14(1):53-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8618166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1997 Dec;11(14):1215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9409540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jan 30;273(5):2829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9446592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 Jan;153(1):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6336730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Horikoshi, K" sort="Horikoshi, K" uniqKey="Horikoshi K" first="K" last="Horikoshi">K. Horikoshi</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Abe, F" sort="Abe, F" uniqKey="Abe F" first="F" last="Abe">F. Abe</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A26 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A26 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11027279
   |texte=   Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11027279" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020